查看原文
其他

“实验心理学数据是否应该使用混合线性模型(LMM)”的讨论

本文来源:52brain我爱脑科学网微信群讨论内容来自文章:

Linear mixed-effects models for within-participant psychology experiments: an introductory tutorial and free, graphical user interface (LMMgui)


文章网址:https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00002/full



引子:



以上引自(Magezi, 2015).


张阳老师回答道:

实验中的正确率不适合作用ANOVA,不管实验设计多么经典(如2选迫选任务,2AFC),也不能使用。这样的数据在单个trial中是1/0的二分。


如何处理这个二分变量的问题?见如下引文:

It is worth noting that ANOVA may not be an appropriate method for accuracy data analysis because accuracy data is inherently categorical (a correct/wrong response in each trial) (Dixon, 2008; Jaeger, 2008)2. Therefore, to provide additional converging evidence, mixed logit models (a type of generalized linear mixed models; Dixon, 2008; Jaeger, 2008) with a maximal random effects structure (Barr, 2013; Barr et al., 2013) was carried out to analyze the accuracy data. The significance of the main effects and interactions was tested by comparing the model including the effects against a model without the effects using a χ2 test (the compare function in MATLAB 2015b; The MathWorks, Inc., Natick, MA, United States). The mixed logit models suggested a significant main effect of task difficulty, χ2(2) = 45.55, p < 0.001 (97.4%, 86.7%, and 74.6% in easy, medium, and hard condition, respectively). The main effect of cueing failed to reach significance, χ2(1) = 2.83, p = 0.09. The task difficulty × cueing interaction was confirmed to be significant, χ2(2) = 6.27, p < 0.05. Follow-up simple effect analyses identified a significant cueing effect in the medium condition only, χ2(2) = 11.46, p < 0.001.


――引自(Li, Miao, Han, He, & Zhang, 2018)



关于这个问题,Jaeger (2008)进行了非常清楚地说明。即使将正确率当作连续变量,进行ANOVA也不合适。比方说同样是 3%的差异, 80% 77% 97% 100% 显然是不一样的,然而,anova认为是一样的。另外,anova要求变量 正态分布,然而 acc并不是正态分布(范围也不是正无穷到负无穷,而是 0-1)。理论上,如果anova 一个条件下全对,另外一个条件哪怕只有一点点差异都有可能显著,因为标准误很小。



如何解决:基本思路就是两个嵌套模型的比较。

相关文献:(Hesselmann, 2018)



问题

正态分布是指样本均值(即所有被试的正确率的平均值)的分布是不是正态分布,不是原始的每个被试的正确率。通常样本量在30以上,样本均值的分布就是正态的,无论原始数据的分布是怎样的。所以可以对正确率的均值当作正态进行分析?


张阳老师回答道:可参考文章Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434-446. doi:http://dx.doi.org/10.1016/j.jml.2007.11.007


anova和用logit mixed modelp值结果有多大差异? (Li et al., 2018)里有两种方法的结果?)用这两种方法在统计结论(显著or不显著)上会多大概率有出入呢?


刘金婷老师观点认为:我觉得用anova不是用错了,而是logit mixed model在某些方面更好,相当于改进了。

相比于因变量测量上的误差,用ANOVA带来的统计误差算是小的,所以我觉得还是实验设计更为重要,而且更不可逆。统计错了可以重来,成本很低。数据收集出了问题,只能卷土重来了。


沈强老师观点认为:是误用,回归可以handle得很好,没必要守着anova不放。这种被试内有多个trial的data,就应该用mixed的回归,anova如果分两步走,是损失了信息的,而且data还不一定符合anova要求的假设。


两种观点的融合:


参考文献:

Dixon, P. (2008). Models of accuracy in repeated-measures designs. Journal of Memory and Language, 59(4), 447-456. doi:https://doi.org/10.1016/j.jml.2007.11.004


Hesselmann, G. (2018). Applying Linear Mixed Effects Models (LMMs) in Within-Participant Designs With Subjective Trial-Based Assessments of Awareness—a Caveat. Frontiers in Psychology, 9(788). doi:10.3389/fpsyg.2018.00788


Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434-446. doi:http://dx.doi.org/10.1016/j.jml.2007.11.007


Li, A.-S., Miao, C.-G., Han, Y., He, X., & Zhang, Y. (2018). Electrophysiological Correlates of the Effect of Task Difficulty on Inhibition of Return. Frontiers in Psychology, 9(2403). doi:10.3389/fpsyg.2018.02403


Magezi, D. A. (2015). Linear mixed-effects models for within-participant psychology experiments: an introductory tutorial and free, graphical user interface (LMMgui). Frontiers in Psychology, 6(2). doi:10.3389/fpsyg.2015.00002




本文来源52brain微信群讨论内容,文章仅限传播,不用于商业行为,若有侵权及疑问,请后台留言!

本文内容整理:hcp4715

本文编辑:cc

52brain,Connect Young Brains.


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存